Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Ab initio path integral molecular dynamics simulations of F$$_2$$H$$^-$$ and F$$_2$$H$$_3^+$$

Suzuki, Kimichi*; Ishibashi, Hiroaki*; Yagi, Kiyoshi*; Shiga, Motoyuki; Tachikawa, Masanori*

Progress in Theoretical Chemistry and Physics, 26, p.207 - 216, 2012/08

The quantum nature of the strong hydrogen bonds for the F$$_2$$H$$^-$$ and F$$_2$$H$$_3^+$$ ions and their deuterated isotopomers at the room temperature has been studied using ab initio path integral molecular dynamics (PIMD) simulations. It is found that, for both of these ions, the hydrogen-bonded H/D atoms largely fluctuate around the central position of two F atoms. The average FH/FF distances of F$$_2$$H$$^-$$ and F$$_2$$H$$_3^+$$ are longer than the average FD/FF distances of F$$_{2}$$D$$^{-}$$ and F$$_2$$H$$_3^+$$ due to the primary/secondary isotope effects, which stem from the difference of the quantum nature of H and D nuclei. These results are compared with the family of Zundel-type ions, O$$_2$$H$$_3^-$$, N$$_2$$H$$_5^-$$, O$$_2$$H$$_5^+$$, and N$$_2$$H$$_7^+$$, which have been studied previously with the same ab initio PIMD approach. A comparison is also made with the previous experimental and ab initio vibrational configuration interaction results of F$$_2$$H$$^-$$.

1 (Records 1-1 displayed on this page)
  • 1